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ABSTRACT

Lamberson, Steven Edward. Ph.D., Purdue University, August 1985.
Equivalent Continuum Finite Element Modelling of Plate-like Space
Lattice Structures. Major Professor: Henry Yang.

A variety of research projects are being pursued involving the
dynamics and control of large plate-like spgif platforms made up
of repetitive lattice-type truss structures. A method involving
finite element modelling of an equivalent continuum formulation
based on matching the strain energy and kinetic energy is developed
for truss type lattices with pinned joints. The method is shown to
give modal results consistent with those obtained using detailed
finite element modelling of the pin jointed space lattice structure,
even for structures with fairly small numbers of repetitions of an
identical unit cell. Feedback controllers designed using reduced
system models derived from these modal results using Modal Cost
Analysis are shown to perform as well as controllers designed using
the detailed analysis results. thlfb/ktjA_,

The efficiency of this method for coupled strucfure, control

system design is demonstrated with a parametric study. Lattice plate

finite elements are used to examine the effect of variation of
several fundamental structural parameters on the natural frequencies

and mode shapes of the structure. Feedback cgntrol systems are

designed and the resulting system bérformance evaluated by




xi

examining the steady state regulation cost of the structure as a
- function of the structural design parameters.
\\\\\i, A micropolar plate continuum model of large plate-like repetitive
space lattice structures with rigid joints is derived. A plate finite
element is derived based on this continuum model with micropolar
rotations and transverse shear deformations incliuded as nodal degrees
of freedom (d76-F*s). The natural frequencies and mode shapes are
calculated using this element for a free floating hexahedral plate-like
space lattice structure. These natural frequencies and mode shapes
are compared to those calculated using a detailed finite element
model (with every structural member modelled by a beam-column
element) for several sets of frame member cross sectional properties.
The static deflections of a centrally loaded and corner supported

rectangular plate-l1ike space lattice structure are also obtained and

compared using these two types of structural models.
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CHAPTER I - INTRODUCTION

Problem Statement

Now that the shuttle has made access to space more economical,
many projects are being proposed which involve large space platforms
made up of lattice-type truss structures. These structures are
generally too flexible to meet the mission requirements and automated
control systems must be used both to maintain the structures' orienta-
tion and to reduce vibrations of the structure. Often, these large
space structures are made up of a simple cell of truss bars repeated
a large number of times in one or two directions. The resulting
structure resembles a beam or a plate when viewed from a distance.
Detailed finite element models of such truss structures have a large
number of degrees of freedom (d.o.f.'s), which are cumbersome and
expensive to use in modal analysis even when dynamic substructuring
and reduction methods are used extensively. An alternative method
is to derive a plate finite element model based on an equivalent
continuum formulation which is used to perform the modal analysis.
In either case the modal model generated must be reduced to an
evaluation model of a size which can be used to evaluate the
effectiveness of various control systems. The modal model must also
be reduced further to a series of design models which are used to

design feedback control systems.

For large lattice-type space truss
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structures the order of the detailed finite element model, the order
of the solvable eigenvalue problem, the order of the solvable control
system evaluation model, and the order of the controller which can
be implemented usually from a rapidly decreasing monotonic sequence.
The object of this research is to develop equivalent plate finite
elements based on equivalent continuum representations of large
plate-l1ike space lattices. The resulting equivalent plate finite
elements are shown to be accurate, flexible, and efficient. They
are also demonstrated to be useful in designing and evaluating the
closed loop system performance of large repetitive plate-like space

Tattices with reduced order controllers.

Structural Modelling Methods

Background

There have been many studies examining finite element modelling
methods of various types of structures which will yield accurate
modal results. There have also been a variety of methods developed
to allow progressively larger finite element models to be used for
modal analysis. In general, this is done using some means of model
reduction. Several methods have been developed to allow large finite
element models (which are discrete representations) to be reduced to
smaller mathematical models (which are also discrete representations).
These methods range from heuristic techniques such as Guyan
reduction1 which rely heavily on the user's experience for accuracy,

2

to iterative techniques such as generalized dynamic reduction®, which

effectively eliminate the need for an experienced user at the expense
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of substantially increasing the computational cost. Other techniques
involve breaking the structure up into substructures which are
analyzed dynamically using a system modelling technique such as

Component Modal Synthesis.3

Basically, this involves developing
a modal model of each of the subcomponents, then combining these
individual modal models into a system model whose only physical
d.o.f.'s are the boundaries connecting the various substructures.
The remaining d.o.f.'s are those representing the modal coordinates
of the individual substructures. The principle problem with this
method is that it is often difficult to determine which modes of a
substructure will contrihute to the modes of the entire structure
which are within the desired frequency bandwidth. Therefore, while
the available techniques have increased the order of finite element
models of structures that can be utilized to perform structural
vibration analysis, there are sufficient difficulties associated
with each reduction method to require that the original finite
element model of the system be generated using the minimum number of
d.o.f.'s consistent with generating an accurate so1ution4.
Since many of the large flexible space structures being
considered are built on a platform which is a space lattice
consisting of truss type members connected together in a repetitive
manner, several methods have been developed to allow the repetitive
space lattice to be modelled as an equivalent continuum. The first

of these applies static loads to a model of a unit cell of the

repetitive space lattice in such a way that the displacement

calculated can be used to determine one or more of the "equivalent"
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properties.5 Another method is to calculate the equivalent properties
based on the number of truss elements within the unit cell aligned

6 A third method matches the strain energy of the

in each direction.
unit cell in terms of a Taylor's series expansion of the midplane
displacements with the strain energy of the unit cell in terms of a
Taylor's series based on the midplane strains.7 The existing work

has focused on predicting the vibration modes of simply supported
truss lattices with pinned joints. There has been some work with
simply supported "beam-like" lattices with the frame members connected

by rigid joints which makes use of the higher order micropolar beam

continuum formulation.8

Detailed Models

For this research the baseline against which the performance of
the equivalent continuum models is evaluated are calculated values
of the free vibration natural frequencies and mode shapes. For
repetitive plate-like space lattices with pinned joints the detailed
finite element model is made with each truss member modelled using
a single axial force type truss element. Chapter II contains a
discussion of the detailed finite element modelling method, a
description of the detailed finite element model of a specific space
lattice, and a comparison of the resulting natural frequencies and
mode shapes with those obtained with an equivalent transverse shear
plate finite element. Repetitive plate-like space lattices with
rigid joints are modelled using a detailed finite element model with

each frame member modelled as a beam-columm type finite element.

wyYTw T . oW v
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-~ Chapter IV contains a description of the detailed finite element
model of a specific space lattice, and a comparison of the resulting
natural frequencies and mode shapes with those obtained with an
equivalent micropolar plate finite element. In both cases, Guyan

reduction is used to reduce the order of the eigenvalue problem.

Equivalent Modelling of Space Lattices with Pinned Joints

The equivalent plate finite element for repetitive space lattices
with pinned joints is derived using an existing equivalent continuum
representation.7 The strain energy expression derived in the
reference in terms of the in-plane, bending, and transverse shear
strains is used as a constitutive Taw to develop a transverse shear
type plate finite element. This element assumes a linear displacement

1ﬁb functions for the two inplane displacement and two transverse shear

deformation d.o.f.'s at each node, and a bicubic Hermite polynomial
displacement function for the transverse displacement. This element
allows considerable simplicity and flexibility in handling various
geometries, boundary conditions, attachments, and other structural
complexities. Chapter II contains a discussion of the existing
equivalent continuum representation, a derivation of the equivalent
plate finite element, a description of the equivalent plate finite
element model for a specific space lattice, and a comparison of the
resulting natural frequencies and mode shapes with those obtained
using a detailed finite element model. Chapter III contains a
parametric study examining the effect on the natural frequencies

and mode shapes of varying the geometric properties of the unit cell

o building block of a specific repetitive space lattice.
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Equivalent Modelling of Space Lattices with Rigid Joints

An equivalent continuum representation is available for beam-1ike
repetitive space lattices with rigid joints.8 This method is
extended to allow plate-like repetitive space lattices with rigid
joints to be represented by a micropoiar plate continuum. The strain
energy expression derived for this continuum representation in terms
of the in-plane, bending, transverse shear, and micropolar strains
is used as a constitutive law to develop a micropolar type plate
finite element. This element assumes linear displacement functions
for the two in-plane displacement, two transverse shear deformation,
and two micropolar rotation d.o.f.'s at each node, and a bicubic
Hermite polynomial displacement function for the transverse displace-
ment. Chapter IV contains a derivation of the micropolar equivalent
continuum and micropolar type plate finite element of repetitive
space lattices with rigid joints. Chapter IV also contains a
description of the micropolar plate finite element model for a
specific space lattice and a comparison of the resulting natural
frequencies and mode shapes for several sets of cross sectional areas
with those obtained using detailed finite element models.

It should be pointed out that by using the equivalent continuum
representations as bridges between the discrete space lattice
structures and the discrete equivalent plate finite element models,
the number and location of node points in the equivalent plate models
is determined based on the number of modes which are desired to be
accurately calculated, not by the geometry of the structure.

Specifically, there is no requirement that (or advantage to) having

TN .'.’."_ ~\'\-‘ ..‘ ;-‘.\"‘ - SNICIN
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the internal nodal points of the equivalent plate finite element
models coincide with joint locations or unit cell boundaries. For
large structures, the number of nodal d.o.f.'s used in the equivalent
plate finite element model will generally be much smaller than the
number of nodal d.o.f.'s required to represent the structure as a f

detailed finite element model.

Control System Design Method

Even though the order of the eigenvalue problem describing the
repetitive plate-like space lattice structure has been reduced
significantly using Guyan reduction for the detailed finite element
models and the inherent reduction associated with using the equivalent

plate finite elements, there will still, in general, be many more

natural frequencies and mode shapes extracted than can be readily
used to evaluate control system performance. In addition, the higher
natural frequencies and mode shapes, particularly when Guyan reduction
is used are known to contain considerable error.9 Therefore, the
higher natural frequencies and mode shapes are truncated and those
retained are used as a modal model of the structure for evaluation
purposes. In order to evaluate the performance of the closed loop
system containing this modal model of the structure and a feedback
controller a cost function is defined as the integral over all time
of the weighted norm of a vector of system d.o.f.'s of interest. The
optimum structure, feedback controller combination is defined to be

10

that system which minimizes this quadratic cost function. In

general, the order of the controller to be used is much smaller

P R R e e e e ettt e ety
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than the order of the modal model needed to represent the dynamic
properties of the structure. Therefore, the modal evaluation model
must be further reduced to obtain the modal model for which the
optimal control system will be designed. While this could also be
done by truncating the higher modes, an alternative method called

d.11 In this method the |

Modal Cost Analysis (MCA) is used instea
open loop cost of each mode is used to rank the modes in terms of
their effect on system performance. Those modes which make the
largest contribution to the open loop system cost are retained. Once
the reduced order control system design modal model has been obtained

10 is used to

the standard Linear Quadratic Gaussian (LQG) theory
design a feedback controller which is optimal for the reduced order

system. This system performance is then calculated using the reduced

order controller to drive the evaluation modal model. It is important
that the evaluation modal model be of substantially higher order than

the reduced order design model to determine the effect of control

system spillover on the modes which were not retained in the reduce
order model. Chapter Il contains a description of the feedback
control system design and closed loop system performance evaluation
methods used. This chapter also contains a description of the
application of these methods for modal models of a specific lattice
structure generated with both a detailed finite element model and an
equivalent plate finite element model, and a comparison of the
resulting closed loop system performance costs for several different
orders of reduced order controller. Chapter III describes the

application of these control system design and evaluation methods to

.....
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a series of modal models generated using equivalent plate finite
element models with various member properties in the form of a
parametric study. The resulting system performance costs are

used to determine the best set of member properties.
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CHAPTER IT - EQUIVALENT MODELLING OF
TRUSSES WITH PINNED JOINTS

Many large space structures are being designed which are made
up of a simple cell of truss bars repeated a large number of times
in two directions. Such a plate-1ike space lattice has been
represented as an equivalent plate continuum with transverse shear
deformation 1‘nc1uded.7 This representation is used to derive an
equivalent plate finite e1ement.12 As a benchmark to compare the
resulting natural frequencies and mode shapes of the structure to,
a detailed finite element model is also developed in which each
member of the truss is modelled as a simple axial force type truss
element. A specific plate-like space lattice structure is used to
demonstrate the accuracy of the simplified equivalent plate finite
element model. The eight by eight repeating cell structure chosen
is large enough to allow the continuum modelling to be acceptable.
However, most structures would have many more repetitions than this

example. This would, of course, increase the cost and cumbersomeness

of the detailed finite element model relative to the continuum model.
This would also improve the basic assumptions inherent in the continuum
model development. The results shown that even with as few as eight
repeating cells in each direction, the control system designs based

on the simplified finite element continuum models are effective as

reduced order controllers for the detailed finite element model.
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A large finite element model of the lattice-type truss structure

13 1his

is developed using standard axial force truss bar elements.
model treats each member of the structure as a pinned-pinned axial
force member with a constant strain. In order to calculate the
frequencies and modes of the detailed finite element model, the
model must be reduced to a manageable order using some form of

dynamic reduction. Guyan reduction1

is used in this study to reduce
the detailed finite element model to a dynamic analysis model retain-
ing d.o.f.'s specified by the user. They are normally chosen to
adequately represent the mass distribution within the structure and

the anticipated frequencies and mode shapes.
[MI{q} + [K]{q} = O (I1.1)

where:

{q}
M]
[K]

vector of the d.o.f.'s of the complex model;

mass matrix of the complex model; and

stiffness matrix of the complex model.

The mass and stiffness matrices are partitioned into submatrices

associated with the d.o.f.'s to be retained and those to be removed.

I s 2 ¥
AR RRNR
Qe
- e ¢ 5 oA conBLE T N ..

—

»
=

M qa K
———— {q} = [K] = | emm-

M
00

----- (11.2)
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..... i---_- —\ = (I1.3)

where:

vector of the d.o.f.'s to be retained;

{q,}

{q.} = vector of the d.o.f.'s to be removed; and

(o]

{F}

force vector.

The static problem can be reduced exactly by using the lower partition

of Equation (II.3) as a constraint equation.
. -1 T .
[Kyda b = (1K 1 - DK, JTK 1 IK 01 Ha, ) = (F) (I11.4)

Guyan reduction assumes that this same transformation can be applied

to the mass matrix.

N U I 0|30 i L LR (98 o i s

1T

a0- (I1.5)

# [k I0K 17 M 10K 17 K

In general this reduction is not exact. However, it is widely used
and gives good results if a suitable set of d.o.f.'s is chosen to
be retained.

In order to perform free vibration analysis of a lattice plate
structure with all edges free, the rigid body motion of the structure,
which renders the stiffness matrix singular, must be accounted for.

In this study, the procedures used in the NASA Structural Analysis

code (NASTRAN) will be used. This procedure is given in detail in

.......................................................
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the NASTRAN theoretical manua114 and is briefly described here. The

reduced dynamic system is solved for the eigenvalues and eigenvectors.

(k1 =AM 11 {9 (3)} = {0} (11.6)

where:

A,
1

the ith eigenvalue of the reduced dynamic system;

{qai} {qa(xi)} = the ith eigenvector of the reduced

dynamic system; and

[Qa] = [qal’ qa2""] = the reduced dynamic system modal

matrix.
However, for the free floating or unsupported plate the stiffness
matrix is singular to order six. The first six eigenvalues are not
precisely zero due to numerical error in the eigenvalue extraction
process. Consequently, the eigenvectors calculated are not precisely
the rigid body modes. Therefore a procedure is implemented to replace
these six eigenvalues and eigenvectors with six rigid body modes.

The stiffness and mass matrices which have already been reduced
using Guyan reduction are further partitioned based on a set of
d.o.f.'s specified by the user as necessary to specify the rigid
body motions of the structure {qr}. The remaining d.o.f.'s are

placed in a set {q¢}.

/M
=
—
n
——— e ———

S IS S S G 3N [ [ S (11.7)




the d.o.f.'s in the flexible set; and

{qf}

{q.} = the d.o.f.'s used to define the rigid body

motion of the structure.

For a rigid body mode the equations of motion can be reduced to a
constraint equation relating the flexible d.o.f.'s to the rigid body

motion d.o.f.'s.
2 -
{1 - w[M,1 {q,} = {0} (I11.8)

For rigid body modes, w = 0, thus Eq. (II.8) reduces to

[Keellag) + [KeJ{qn} = {0} (11.9)

{ag} = [D]{q,} (11.10)
where

(0] = - [Keel '[Ke 15 and

w = natural frequency of the mode.

By matching the kinetic energy of the structure in the rigid body
mode and using the constraint Eq. (II1.10) to eliminate {q¢} the

rigid body mass matrix is defined.

1 9 Mee 1 Mer | ) 9 1 ,..T .
M =1 '}“f"" IR AL RUUNICE: (11.11)
]
9 _ﬂfr ' Mrr NI

Substituting Eq. (I1.10) for {ac} in (I1.11) and multiplying out
Eq. (II.11) gives
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(43T 368 = (47001 DM 10D48 3 + 13,0 TT0T "IN, 16 3
+ 13, Mg, JTI01(G,} + €3, M, 146,
where the rigid body mass matrix
(M.J = (D1 MeeI00T + [01TMe ] + DM T[0T + M 1. (11.12)

A set of rigid body modes is generated such that they form an orthogo-

nal, normalized set with respect to the rigid body mass matrix.
T =
Q.1 M.JIQ,. 1 = [1] (11.13)

The rigid body eigenvectors are calculated for the flexible d.o.f.'s
and augmented to the rigid body modes to give the rigid body mode

shapes of the entire set of d.o.f.'s.

[0IQ,,]
Qo] = -=----- (11.14)

The original modal matrix calculated using Eq. (I1.6) is
partitioned into the approximate eigenvectors and accurate flexible

eigenvectors.

[0,] = [[0y] { [0 [Q] = [[Q,,] | [Q,¢1] (11.15)

The rigid body partitioned matrix [Qar] is discarded and replaced by
the more accurate rigid body mode shapes calculated using Eq.
(I1.13). The resulting modal matrix is orthogonalized and normalized

to give the system modal matrix.
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[o1"[m, 1003 = [1] (11.16)

Equivalent Continuum Representation

The method developed in Reference 7 is used to generate strain
energy and kinetic energy expressions for the structure in terms of
strain components of the plate at the midplane. Briefly, the

displacements are assumed to vary linearly through the thickness of

the plate (Fig. 1).

u(x,y,z) = u?(x,y) + z¢ (x,y)
v(x,y,z) = vo(x,y) + zq>y(x,y) (11.17)
W(X,y,Z) = WO(XQy) + Ze%(x,y)

where
(x,y,z) are the coordinates of a point within the plate;
(u,v,w) are the displacements along (x,y,z);
(¢ ,¢y) are the rotations about the (-y,x) axes at the
midplane (z = 0);
(u°,v°,w°) are the displacements along (x,y,z) at the

midplane; and

- % at the midplane.

The axial strain in the truss members of a typical unit cell is
expressed in terms of strain components.
K 3 3

S RN 2 X (11.18)
i=1 j=1

S - S e e
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JOINT TRANSLATIONS:

. MIDPLANE TRANSLATIONS
A AND ROTATIONS

Joint i
(X7 4Yi+2; >¢ZV'
€ (X,,)ﬁ)/r

Z,} g .Yfﬂwx.,yn

éf'k\LHx,M
¢X(xl 7yl (x”yl ,’())

Py(Xi,y)

S X
xi -

Figure 1. Plate Displacement Components
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where:
ek = axial strain in the k'th truss bar;
k _ . Kk,
€55 = strain component of ¢ ; and
) k - direction cosines of the member.

These are then expanded using a Taylor's series in terms of the

strain components and their derivatives about some arbitrary origin
within the unit cell. The fact that the forces associated with

certain of the strain components and derivatives are zeros is used

to reduce the strain energy expression to an expression in terms of
eight strain components at the plate midplane. The truss cell geometry

used in this study is one of those analyzed in the reference.

=1 T
: Ucell = 2 2cert 16y} [Hegliey) (11.19)
W
where
Ucerq = Strain energy of a unit cell;

ace]l = cross sectional area of a unit cell;

[weq] = equivalent constitutive matrix;

{€}=[o 0 0 0 0 0 0 OJT,
) €11 ©22° ©12° 11® K22° K12° B13° 23

0 _1 3u, 2y,
®ij ~ 2 (ay tax)
= 1 (39X , 3dy,,
ki3 57 Gy * )5 and
=1 (v
81-3’2( +¢X)'
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Equivalent Finite Element Model

The 16 d.o.f. rectangular plate e]ement15
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Hermite polynomial.

U= a) +aX +agy +axy

<
"

g + agX + azy + agxy

=
"

2.2

2 3 3.3
* 322"3y * a23x2y T agxy

€13 T 8p5 T 356X + 59y + ApgXy

0 _
€23 T 89 * 83pX + a31¥ + a3,Xy

expression for the element.

o1 J J TroqT
U, = {a}'[B] [W_. ][B]{a}dydx
el 2aceH AREA eq

where

- i - T,
{e,} = [B]) {a}; {a} = [al, 85 .- a32] :

-----
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is modified to include

transverse shear terms and in-plane terms yielding a 32 d.o.f.
element (Fig. 2). The interpolation functions are assumed as linear

except for the out-of-plane displacement which is assumed as a bi-cubic

2 2 3 2
8g + 31X t 1Yt agpX YA Xyt Ay taggXt +a Xy

3

2 3 3
+apxyT b gyt 4 aggxTy +asgxTyt + o, xy (11.20)

Substituting Eq. (II.20) into Eq. (II.19) gives the strain energy

(I1.21)

(11.21)

..............
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NODAL DEGREES OF FREEDOM:

U3 V; W3 Wox; W3 Wiy ] €323 €
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® A q ©

©) &)

> X,U

Figure 2. The 32 Degree of Freedom Equivalent
’ Lattice Plate Finite Element.
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[Bl] = 0 0 0 0 0 1 «x 3
(0 0 0.5 0.5x 0 0.5 0 0.5x
[0 0 0 -2 0 0 -6x -2y O 0 -6xy
[Bz] =10 00 0 0 -2 0 0 -2x -6y 0 ;
000 0 -1 0 0 -2y -2y 0 -3x°
-2y2 0 -6xy2 -2y3 -6xy3
tﬂF (8,1 = _2x2 -6xy -2x3 -6x2y 6x3y s
| ~4x -3y2 -6x2y -6xy2 -9x2y2a
01 1 y 0 0 0 0 ]
[B4] = ({00 O 0 0 0 1 «x ; and
|0 0 0.5 0.5x 0 0.5 0 0.5y
(1 x y xy 0 0 0 O
[Bs] =
|0 00 0 1 x y xy

Relating the 32 displacement function coefficients to the 32 d.o.f.'s

of the element the strain energy of the element is transformed in

terms of the element d.o.f.'s
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s
|

1 T TrgqT
el "7y 19 JAREAJ [T1°[8] [WggI[BI[TIdydx{g}  (I1.22)

where:

{a} = [T]{g} ;

(g} = [tg2", 1g,)T, 1957, {9,375 and AREA is the area

of the rectangular plate finite element.
This defines the stiffness matrix of the element.

1

[k ,]=—— j
el” a1y JaRea

f (71781 [W,qJIBIT dydx (11.23)

The kinetic energy expression derived in Ref. 7 is used to generate the

Tumped mass matrix of the element.

u (my 0 0 m 071 (u
v 0 my 0 O my v
KE =gagq ¢wy |0 0 m 0 0w (11.24)
éx m 0 0 m 0 éx
é_y -0 m 0 0 m | &’y

where Mg My and m, are equivalent lumped masses of the space truss

defined in the reference.

M 0 0 0]
0 M2 0 ©
Mgy = 0 o M o (11.25)
(0 0 0 M
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where
AREA
M.]=" 0m B
1 dcen 0
A 0 Mo
3 SYMMETRY
0 O mg |
my 0 0 Mo
0 0 0 O O O
L 0 0 0 0 0 0 0]

Control System Design Method

The detailed finite element model is reduced to an evaluation
modal model which can be readily analyzed to determine the effectiveness
fﬁ of the various control designs. The modes retained in the evaluation
\ ‘t’ model are arbitrarily selected to be the lowest frequency modes of

the complex model that are both controllable and observable. The
15

evaluation model is used in the real modal form.
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where
{u} is the input force vector to the system;
{w} is the input disturbance vector to the system;
{v} is the measurement disturbance vector of the system;
{z} is the measurement vector of the system;

{y} is the output vector of the system;

q.
i
{Qi} = g with q; = the modal coordinate associated with
i
mode i
0
[8,] = 7 \with {b;}T = the modal coefficients of the
b.
1 applied force for mode i;
0 T
[Dil = 7t with {d} = the modal coefficient of the
d.
! applied disturbance vector for mode i;
[Ci] = [ci 0] with {ci} = the modal coefficients of the
output vector for mode i;
[Mi] = [mi 0] with {mi} = the modal coefficients of the
measurement vector for mode i;
0 1
[Ni] = with w; = the natural frequency of the
2
oy -2Twg mode 1; and
¢ = the modal damping coefficient.

The full models available from either the complex model or the

equivalent plate finite element models usually generate too many
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modes to be used directly as control design models. Therefore, some
means of model reduction is required. Several dynamic reduction
schemes have been developed to al ow the control problem to influence
the model reduction; of these Modal Cost Analysis (MCA) is the

17 In order to use MCA, the relative

most straightforward to use.
importance of a set of outputs, each of which is a lTinear combination
of d.o.f.'s of the structure is used to build a positive definite
output weighting matrix [Q]. The cost which is to be minimized by
the control system is then defined as the sum of a weighted norm of

the output vector plus a weighted norm of the measurement vector.
vV = Vy + pVZ (11.27)
where

L.
lim E J {y}'[Ql{y}dt ;

V =
S 0
T
v, = lin E J 1237121 tzyat
T 0
E = expected value; and

p = measurement weight.

The weighting matrix used for measurements is the inverse of the

covariance matrix of the measurement errors.

[z] = E[{v}iviT] (11.28)
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For small values of modal damping this can be reduced to an uncoupled

set of equations as derived in Ref. 17.

1

V. =
4;w?

1

(e, 11Q)ee;3 + m3 121 Hm 1) (16,3 b)) (11.29)

Control design models of order n are derived from the detailed
finite element and the equivalent plate model by retaining the n/2
modes having the largest modal costs. Since rigid body modes have

infinite modal cost, they must always be retained in the reduced models

if they are controllable and observable.

Each control design model is used to design a standard LQG

contro]]er.lo
- {q} = [AJ{q} + [B]{u} + [D]{w}
L7
{y} = [C]{q}
{z} = [M]{q} + v (I1.30)
where

E{w} = E{v} = 0;

- ELtw(<)3w(t))1] = [Wls(t-1);

L\':~

t. EL(v(e)v(t)} ] = [V]s(t-t);s

E{‘ ELw(t)34a(0)}7] = E[v(t)}{q(0)3'] = 0; and
# E[(v(t)yw(<)}' ] = 0 .
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Starting with a reduced system in the form of Eq. (I1.26) a state

estimator is designed to allow a feedback controller to be designed.
{q) = [Al{@} + [Blu} + [F1[{z} - [M]{q}] (11.31)
Where the filter matrix is defined as a Riccati equation.

QOO

[F]

(PICA]T + [AICPT - [PIMITCVI~IIMICP] + [DI(WILDIT
(11.32)

(ol

Once the estimate of the state is available a state feedback controller

is designed.

() = [6]&} (11.33)
1(; Where the feedback gain matrix [G] is defined as a Riccati equation.
[6] = - & [RIT81TK]

(01 = (KI[AD + [A1TCKT - + (KI(BIERIT(BITCK + [€3'(QILc]

(11.34)

Closed Loop System Performance

The full order controller based on the evaluation model can be

evaluated directly, as in Ref. 10.

vV = Vy + qu

o1t T T .
¢ =i [ o TTolyide = erLed"TQI0C] [ + [P1] (11.35)
.y T«)oo 0
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;
v, = 1ind J T RICuddt = tr[61 [RI[GI[X]
T+ 0
where
[0] = [XJ{[A] + [BI[G]}" +{[A] + [BI[G]}[X] + [FI[VI[FI
(11.36)

In order to evaluate the full evaluation model driven by a reduced
order controller, the evaluation model must be augmented with the

controller model as in Ref. 16.

For the evaluation model,

(4o} = [AJ{q } + [BJ{u} + [D J{w)

ty} = [C,)Mq,)

{z} [Me]{qe} + {v} (11.37)

For the controller model,

{q} [AC]{q} + [Fpliz}

{u} = [65]1q) (11.38)
where

[Ac] = [AR] + [BR][GR] - [FR][MR]

This forms an augmented system.

q A. BG q 0

e ) e e R el ., e or
x ~

q FaMe  Ac q 0 Fpy

PR .
R I P O R SRR
R S TN T R LA E R S R R SR R . I TR T 6.
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(9,1 = [A,2(a,) + [0 iw,} (11.39)
y C 0] {q W 0
= ~ o= e gl (W] =
u 0 6| (9 a e 3 0o v
from which
v, = trlc 1T[Q1IC, X i and
V, = trlGp] TRILGRITXg]
where
e Xe
(X1 = ; and
Xe X

[0] = [x,J(A,07 + [A,[X,1 + [D,1[W,1(D,1" .

Results

Detailed Finite Element Model
A unit cell of the lattice-type space structure to be analyzed in
this study is shown in Fig. 3. The dimensions of the unit cell are

those from Ref. 7. It is 15 meters square by 7.5 meters deep.

Structural members on the upper surface have an area of 80 mmz. The

bottom surface members have an area of 50 mmz. Elements connecting

the two surfaces have an area of 10 mmz. The material has a Young's

Modulus of 71.7x109 Nt/m2 and a density of 2768 kg/m3. The structure

to be analyzed consists of identical cells repeated eight times in

R T R N AT S LRI JOs VAL SRS NS N I TR IR VY N
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Figure 3. Plate-1ike Space Lattice Unit Cell
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each of two directions (Fig. 4). The resulting structure resembles a
plate. The detailed finite element model is made using a pinned truss
element for each member. This model is analyzed using NASTRAN. The
full model has 1254 d.o.f.'s. The reduced dynamic analysis model has
214 d.o.f.'s as shown in Fig. 5. This structure was chosen to be
large enough to allow an equivalent continuum model to be accurate
over a significant frequency range, but small enough to be readily

analyzed.

Equivalent Plate Models
The truss properties of the unit cell shown in Fig. 3 are used to
generate the strain energy and kinetic energy of the structure in
terms of the strain components at an arbitrary point within the cell.
The matrices [weq] and [Meq] in the strain energy expression Eq. (I11.21)
and kinetic energy expression Eq. (11.24), respectively, are tabulated

below and are in agreement with those presented in Ref. 7.

Constitutive Matrix

1.6822 | 0.4394 | 0.0 | 1.45573.8025| 0.0 /0.0 }0.0

1.6822 | 0.0 3.8025| 1.4557| 0.0 ;0.0 |0.0

1.7576{ 0.0 0.0 15.21410.0 (0.0

23.6559 | 6.179 | 0.0 |0.0 0.0
& . 23.6559( 0.0 |0.0 0.0
SYMMETRY 24.716|0.0 0.0

0.388/0.0

L 0-3881 11.39)
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Mass Density Matrix

o 1
0.17754 1 0.0 0.0 0.14176m| 0.0
0.17794] 0.0 0.0 0.14176m
M ] = 0.17794| 0.0 0.0
; 3
kg/m SYMMETRY 2.3698m?| 0.0
2.3698m° (11.40)

These expressions are used to derive an equivalent plate finite
element. This element is used to form two equivalent plate models,
a coarse one (4x4) containing 16 uniform elements, and a more detailed

one (8x8) containing 64 uniform elements.

Free Vibration Analysis

Each of the three finite element models, a complex model (1254
bar elements) and two equivalent plate models (4x4 and 8x8 meshes),
was analyzed to determine the natural frequencies and mode shapes of
the structure. The lower natural frequencies and the associated mode
shapes predicted by the three models are shown in Fig. 6. The mode
shapes predicted by all the models are very similar. Contour plots
of several of the elastic modes generated for the structure
contained in Appendix A. The three sets of frequencies are in good
agreement, especially at Tow frequencies. The relative costs to
execute each vibration analysis are given in Table 1. Even with as

few as eight cell repetitions in each direction the cost savings using

the equivalent plate finite element model are substantial.
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Figure 6. Elastic Modes of the Space
Lattice Structure.
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Table 1. Relative Vibration Analysis Costs

Model Relative Cost
Complex 1.0000
4x4 elements 0.0350
8x8 elements 0.1000

Control Problem
The control problem used to evaluate the capability of the
equivalent continuum models involves angular sensors and actuators
located at the center and the four corners of the structure. This is

17 It is assumed

similar to a case examined for an isotropic plate.
that the output is measured and the disturbance is acting on these ten
rotational d.o.f.'s at the five locations. Therefore, the [B], [D],
[C]T, and [M]T matrices are identical. The output and control

weighting matrices are assumed to be identity matrices. The disturbance
weighting matrix [W] is assumed to be 0.0001 times the identity matrix.

12

The measurement weight matrix [V] is assumed to be 10~ times the

identity matrix. The modal damping ¢ is assumed to be 0.005.

Evaluation Model
A system containing 24 modes was used to design a control system
using LQG theory. The evaluation model was chosen to include the
two rigid body modes that are both observable and controllable.

The frequencies and modal coefficients are given in Table 2.

......

_____________
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Table 2. GEvaluation Model Rotational Coefficients

Natural]  Rotation about the y-axis {6,) — Rotation about the x-axis (8y)

Freq Corner| Cornerl Corner{ Cornen Corner] Corner] Cornen Corner

(Hz) | 1 2 3 4 |Centery 1 2 3 4 |Center
0.00( -3,76 |-3,76 {~-3,76 |-3,76]-3,76| -3.76 |-3,76 | -3,76 | -3,76]-3.76
0,00) -3.55 |-3,55 |~-3,55 |-3,55]-3,55| 3,5 | 3,55 ] 3,55 3.55| 3,55
1,16| 5,88 | 5.88 |-5,88 |-5.,88 | 0,00| 5,88 {-5,88 |-5,88 | 5.88] 0,00
1,99| 6,98 |-6,98 |-7,04 | 6,99 | 0,00| -6,98 |-6,98| 7,03 | 6,98 0,00
2.26| 6,49 |-6.50 |-6.,67 | 6,53 0,00 6.51 | 6,54 |-6,39 | -6,53| 0.00
2,76 111,72 | 9,35 ¢11,97 | 9,29 1.45( -7.57 | 2.75 |=-7.21 | 2,75] 2.95
2.76 ) 2,75 |-7.57 | 2,75 |-7,57{2.95| -9.35 |11,71 {-9,35 {11,71}-1.45
4,14 7,92 [-8,50 |-9.01 | 7.67 (0,00| 8,19 | 8,16 |-7.71 | -8B,21| 0.00
4,23110,75 10,17 {10,79 |11.08 |-2.87 .43 801 -,74 .16} -,06
a.23| a7 | 2| .a7| .12f2.87]-1061 }10.60 10,61 }10.60] 2088
4,67] -9.54 |-9.63 | 9,81 | 9,49 0,00 8,82 |-8,68 }-9,40 | 8,68] 0,00
4,79 |-10.30 410,39 |10,67 (10,29 | 0,00 |-10,92 11,06 | 10,30 }11,06| 0,00
5.84112,75 | 9,94 13,47 | 9,43 (3,27} 8,32 |-1,90 | 7,04 B9 .94
5.85| 2,02 |-8,29 | 2.02 {-8,29|-,90| 9.88 |12,74 | 9.88 [12,74] 3,26
6,30 -6,47 | 6,03 | 7,00 {-7,02| 0,00 5,81 | 6,19 }-7.25 |-5,92] 0.00
6,42 -5,78 | 5,58 { 6,25 |-6,19| 0,00 | -6.44 |-6,19 | 5,65 6,39} 0,00
6.76 |-11,80 [12,83 $+12.53 [12.,38| .,72| 2.57 |-4,29 | 4,05 |-4,22|-2.61
6.78| -4,26 | 2,29 |-4,26 | 2.29|0.n0 |-12,51 {11,99 {12,561 { 11,99} 0,00
7.31}-10,13 |-9,36 |10.,04 | 9.75{ 0,00 -9,76 | 9,56 | 8,97 |-9,72| 0.00
7.62 {-12.01 12,32 }12,20 -11,91}0,00|-10,46 +10,96 | 9,30 {10,768} 0,00
7.681 4,03 |-4,35 |-4,33 | 3,86 -,05| -7,23 |-6.,68 | 8,65 | 6,90| .08
8.38| 6.67 | 2,37 | 7.21 | 8,43|4,20{ -.8]1 {-4,70 |-3,07 |-4,24)-1,71
8.40| -4.51 [-1,13 |-4,51 |-1,13)-1.64| -7,93 |-6.62 [-7.93 |-6.62|-4,23
8.81] 4.81 | 9.41 }-9.,20 |-4.69| .22]|-7.12 | 3,80 | 7,19 |-7.50] .75

Modal Cost Analysis

The modal costs are calculated for each of the three analysis

models and plotted versus frequency in Fig. 7.

The 8x8 element model

and the complex model have very similar modal cost distributions.

Not surprisingly, the 4x4 element does not predict the modal costs

as closely.

The frequencies and modal coefficients for the two

finite element modal models are given in Tables 3 and 4 for the

4x4 and 8x8 meshes, respectively.
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Figure 7. Modal Costs of the Example Lattice Structure
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Table 3. 4x4 Equivalent Plate Model
Rotational Coefficients

Natural| Rotation about the y-axis (8x) Rotation about the x-axis (8y)
FrP% Corner] Corner| Corner|Cornen "Corner|Corner| Corner|Cornen

] 2 3 4 (Center 1 2 3 4 |[Center

0.00 {-5,35(-5,35 [-5,35 |-5,35 5,35 -,49 [ -, 49 -,49 | -,49| -,49
0.00 .49 .49 .49 A9 | .49 -5,35 |-5,35 [ -5,35 [-5,35-5,35

1,12 |-5.,71 | -6,71 | 5,71 [ 5,71 |0.00{ -5.71 | 6,71 | 5,71 |-5,71] 0,00
N 1.80 | 6,66 | -6.66 |-6.66 | 6.66 | 0,00) -6,66 |-6.66 | 6.66 | 6.66 | 0,00
“s 2.06 |-7.53| 7.3 ] 7,83 ]-7.3(0,00| -7,53 |-7.53 | 7.53 | 7.53]0.00
= 2,40 110,28 12,08 [ 10,28 t12,08 | ,76]-1,70 | 6.57 [-1.,70 | 6.57 |-2.06
. 2.40 |-6,57 | 1.70 |-6.57 | 1,70 2,06 |-12,08 |10,28 12,08 |10,28 | .76
i 3.34 |-6,70| 6,70 | 6.70 |-6,70 (0,00 -6,70 (-6.70 | 6,70 | 6,70 [ 0.00
3.56 [12,02 { 12,50 | 12,02 |12,51 2,14 | -2,92 |-4,83 |-2,92 |-4,53| .65
3 3,56 | 4,53 2,92 | 4,53 | 2.92|-.65]| 12,50 |12.02 | 12,51 |12.02 |-2.14
g 3.67 |-9,981-9.98 | 9.98 [ 9,98 0,00 9,98 |-9,98 |-9.,98 | 9,98 0.00
3.80 |-9.87 |-9.87 | 9.87 | 9,87 (0,00 -9.87 | 9.87 | 9,87 |-9.87 ] 0.00
>
b
‘! Table 4. 8x8 Equivalent Plate Model
- Rotational Coefficients
- Natural| Rotation about the y-axis (6x) Rotation about the x-axis (8y)
o Freq. [Corner] Corner] Corner] Cornen Torner Corner] Corner| Cornen
Qs (Hz) 1 2 3 4 {Center] 1 2 3 4 [Center

0,00 | s.s5] 5,55 | 5,55 | 5.55|5.55| .26 .26| .26 .26] .26
o.00{ .25| .25 .25| .25| .25|-5.,58|-5.58|-5.58-5.68]-5.58
1.17 | 5.80| 5.80|-5.80|-5.80{ 0,00 5.80|-5.80 |-5.80| 5.80] 0.00
2.00 |[-6.88 | 6.88| 6.88|-6.88| 0,00 6.88| 6.88|-6.88 | -6.88[ 0.00
2.27 {-7.,02{ 7.02| 7,02|-7.02{0.00|-7,02{-7.02| 7.02} 7.02] 0.00
2.68 | 8,36 |-4,50 | 8,36 |-4,50|-2,50 (11,17 | -8.66 | 11.17 | -B.66 |-1.62
2.68 | 8.66 11,17 | 8.66 | -1.62| 0,00 | -4.50| 8.36 |-4.50 | 8.36|-2.50
3.93 {-7.60| 7.60{ 7.60|-7.60| 0.00}|-7.60{-7.60| 7.60| 7.60| 0.00
4,11 13,10 |13.10 | 13,10 |13,10(-2.26 | .86 .77| .86| .77]-.14_
4,11 | -,77| -.86| -.77] -.86| .14 }13,10]13.10 }13.10 | 13.10}-2.26
4,31 [11.39 (11,39 11,39 11,39 0,00 F11.39] 11.39 { 11,39 11,39 | 0,00
4,60 }11,87 111,87 11,87 | 11.87] 0.00 11,87 | 11.87 | 11.87 |11.87 | 0.00
5.41 }11.73 }10.26 +11.73 10,26 |-1.03 | -6.21 | -2.48 | -6.21 | -2.48 | -.41
5.41 |-2,48 | -6.21 | -2.48 | -6.21( -.41 |10.26 | 11.73 {10.26 | 11.73{ 1.03
5,99 (11,23 }11,23 }11,23 {11.23| 0,00 }11,23 {-11.23 [11.23 | 11,23 0.00
6.14 |-9.50] 9.50 | 9.50{-9.50| 0.00 |-9.50] -9.50 | 9.50 | 9.50/ 0.00
6.29 | 2.79 |-2.06 | 2,79 |-2.07|-2.24 19,02 | 18,93 }19.02 | 18.93| .29

ERCRRE

) 2u s Sae of
AL

[ 6.29 (18,93 }-19.02 | 18,93 [19,02| .29 | 2,07 -2.79| 2,07 |-2.79]| 2.24
4 6.68 | 6,65| 6,65 |-6,65|-6,65{0,00| 6,65 -6,65|-6,65] 6,65 0,00
- 6.98 |-9.16 | 9.16 | 9,16 (-9,16! 0,00 | 9,16 | 9,16 [-9,16 { -9,16| 0.00
& 7.13 klﬂ.dl 10,41 | 10,41 10,411} 0,00 -10,41 |-10,41 | 10,41 | 10,41 | 0,00 ;
[ 7.92 }16,27 (16,37 | 16,27 (16,37 5,32 | -,97(19.86| -.97] 1,99 .17
&= 7.92 |-1,99 .97 | -1.99 971 -.17 116,37 | 16,27 | 16,37 | 16,27 | 5,32
:ﬁ 8.05 116,57 }-16,57 [ 16.57 | 16,57 | 0,00 | 16,57 [-16.57 }-16.57 | 16,57 | 0.00

.Iv r‘vv' ’.z‘:ﬁ: ‘rv A v—lv;r;ﬁ




h of several reduced order controllers is shown in Fig. 8.

!;’- A basic procedure to analyze plate-like space lattice structures
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Control Design Models
The reduced models chosen contain the two observable and control-
lable rigid body modes plus up to ten elastic modes. The elastic

modes retained are those with the largest modal costs. The performance

Conclusions

using finite element models of equivalent continuum formulations of
the strain energy and kinetic energy of the structure has been
developed and implemeneted. By retaining the transverse shear
deformations in the finite element formulation, the equivalent plate
finite element models are found to give modal results consistent with
. those generated from a detailed truss bar element model of the space
° lattice structure even for small numbers of unit cell repetitions.
The modal models resulting from the finite element model are
shown to serve as accurately, yet are more simplified in the control
design process compared to the complex truss bar element model for

the space-lattice structure. This study has shown that choosing

control design models based on modal sequence may involve unnecessary

e modes. By using Modal Cost Analysis to consider the control problem

{'. based on a sequence of lower modes, it is found that several

};}_ intermediate modes do not contribute much to the control design.
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R CHAPTER III - EQUIVALENT MODELLING
e
AS A DESIGN TOOL - PARAMETRIC STUDY
Lattice plate finite elements based on a continuum model of a
large plate-like lattice space structure are used to examine the
effect of variation of several fundamental structural parameters on
the natural frequencies and mode shapes of the structure.18 Reduced
order controller design models are developed using modal cost analysis
to rank the modes for each set of structural parameter values. The
1inear quadratic Gaussian (LQG) controller design method is used to
c‘f develop feedback control systems for each set of structural parameter

values. The resulting system performance is then evaluated by examining
the steady state regulation cost of the structure as a function of the

structural design parameters.

Problem Statement

The initial space lattice geometry used in this study was used
in Chapter II to demonstrate the effectiveness of equivalent finite
element models in designing feedback control systems for plate-like
lattice space structures. A simple unit cell (Fig. 9) is repeated
eight times in two orthogonal directions to generate the lattice
space structure. The lattice space structure geometry is defined by
six parameters. Four of these are the cross sectional areas of:

o the upper surface members (Al)’ the lower surface members (A2), the
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Figure 9. Space Lattice Structure Unit Cell.




vertical members connecting the two surfaces (AV), and the diagonal
members connecting the two surfaces (Ad). The remaining two parameters
are the thickness or height (h) and half-width (L) of the unit cell.
For simplicity, it is assumed in this study that all members are of
circular hollow cross sections with outer diameter (do) and inner
diameter (di)’ The ratio between the two diameters (do/di) is defined
as a. The plate-like lattice structure is assumed to be free along
all four edges. The control system configuration, shown as a midplane
in Fig. 10, consists of a set of four pairs of torque actuators (A)
about the x and y axes respectively located along the diagonals of
the plate-like structure at a distance of 21.3 meters from each
corner. The eight actuators are driven by a feedback control system
using eight sensors (M) measuring the angular motion of the structure.
(ﬂf These angular sensors are lgocated in pairs at the four corners of the
structure. Five pairs of disturbances (D) are used: four pairs are

at the same location as the actuators and one pair is at a distance

of 21.3 meters from the center of the structure along a diagonal.

Cross Sectional Area Variation

The first parametric variation performed in this study is
optimizing the cross sectional areas (Al’ A2, Av and Ad) for fixed

lengths (L and h). Examining the strain energy terms calculated for

the equivalent continuum formulation (see Table 2 of Ref. 7), it is

1,
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v
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|

apparent that the bending stiffnesses depend on the sum of A1 and A2
and the transverse shear stiffness depends on Ad’ The natural
frequencies and mode shapes for small amplitude transverse vibration

of the lattice are virtually independent of the in-plane stiffness
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which depends on the difference between A1 and A2 (see Table 2 of
Ref. 7). Therefore, the natural frequencies and mode shapes for
transverse vibration of the lattice are independent of the relative
magnitude of A1 and A2. For simplicity of this study, the cross
sectional areas (AS) of all the members in the upper and lower

surfaces is assumed to be the same.
= A2 (111.1)

The cross sectional area Av is held constant at its original value.

The total mass of the structure, which is held constant, is given by:

. 20AREA 1 l1h d
M= 1 [(1 + /f) (A1+A2) * 37 Av * T Ad] (I11.2)

where p is the mass density of the structural members and d = /52+L2.
Substituting the assumed parameter values into Eq. (IIl.2) yields

the following relation between AS and Ad'
A = (69.167 - 4.167x10°A;) x 10™°n? (I11.3)

The members of the lattice structure are extremely slender.
Before examining the effect of varying As and Ad on the natural
frequencies, mode shapes, and performance, their effect on the Euler
buckling load capacity of each member of the lattice is examined and
shown in Fig. 11. Since A, is related to A4 by Eq. (I11.3), only
R4 is used in presenting results. The buckling load of each tubular
member is nondimensionalized by dividing its value by the buckling

load of the initial lower surface members
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.............................
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Figure 11. Allowable Buckling Load vs. Diagonal
Member Area.
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. Po = —T (111.4)
= where
> E = 71.7x10;
w(a4-1)d§
IO = ——b4—— 5 and
d0 = adi

Figure 12 shows that as Ad is varied to either extreme, Ad or the
inversely related AS will become very small causing the members to
have unacceptably low values of the Euler buckling load. For
reference, the Euler buckling loads of the surface and diagonal
members in the initial configuration are shown in Fig. 11 as dashed
lines. Figure 12 shows the effect of the cross section area Ad

(and the inversely related AS) on the natural frequencies of various
modes. It is noted that modes 4,5 and modes 7,8 are double modes.

It is interesting to note that all of the present natural frequencies
for the ten lowest modes approach maxima when Ad is between 30 and

50 mme.

Apparently, the trends of these curves result from the
compensating effects of three factors: the bending stiffness, the
transverse shear stiffness, and the rotatory inertia. When Ad
decreases (or AS increases) both the bending stiffness and the
rotatory inertia increase, whereas the transverse shear stiffness
decreases. Figure 13 shows the effect of Ad on the modal cost for

each mode. As the Ad value decreases, the modal cost of the first

mode becomes increasingly dominant, whereas the modal cost curves for
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several other modes cross each other. Such crossings indicate that
different modes are retained at different A values in the reduced
order feedback control system design models.

For each set of parameter values, a series of reduced order
controllers are designed using the LQG method. The system performance
is evaluated using the full evalation model driven by the reduced
order controller. A typical performance curve (Fig. 14) relating
regulation cost (Vy) to control energy (Vu) is generated by varying
p in Eq. (II1.27). The performance curves for all of the cases studied
are very similar and are contained in Appendix B. Figure 15 shows
the regulation cost (Vy) versus A, for various constant values of
(solid curves) and for the minimum Vy (circled points). These
results are for a controller designed retaining two rigid body
modes and three elastic modes in the reduced order controller design
model. The results for other reduced order controllers were similar
and are also in Appendix B. The minimum regulation cost is obtained

for Ad values between 10 and 30 nmz.

It is interesting to see that
designs near the Ad value of the original configuration perform

better than designs near the peak frequency.

Thickness or Height Variation

As a second parametric study, the effect of varying the depth
of the structure (h) is examined. The variation is performed such
that the buckling load in the slender truss members connecting the
surfaces and the total mass of the structure is held constant.

For tubular members with a constant ratio of outer and inner

diameters, the moment of inertia (I) is proportional to the cross
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sectional area (Av). Thus the Euler buckling Toad in the vertical

members is held constant by maintaining a constant ratio between
the cross sectional area (Av) and the height (h). For simplicity,

the cross sectional area Ad is assumed equal to Av.

6

- _ (1.33x10 °m
Av = Ay = C———7T§————) h (III.5)

Substituting the assumed parameter values into the mass Eq. (III.2)

yields the relation between AS and h.

] ] 2
A = 141.2x1070 - B s —(—1—1”1‘ (111.6)
1+ L
V2
where
h' = h/7.5m.

As h increases, the nondimensionalized Euler buckling load in the
surface members (Fig. 16) decreases, eventually indicating that

these members are too slender. The natural frequencies of the

first ten elastic modes of the structure are shown in Fig. 17.

Note that the maximum frequency of the present ten modes occurs

at thicknesses near 22.5 meters. The trend in these curves is caused
by the compensating effects of As and h on the bending stiffness,
transverse shear stiffness, and rotatory inertia. As h increases,

AS increases Eq. (III.6). Therefore, the increase in stiffness

due to increasing h is offset by the reduction in stiffness due to

decreasing As'
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Figure 16. Allowable Buckling Load vs. Thickness.
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The modal cost as a function of thickness (h) for the various
modes is shown in Fig. 18. Since the modal cost curves show some
crossings, different elastic modes will be retained in the reduced
order models for different ranges of thickness (h). Figure 19 shows

the regulation cost (V) versus thickness for various constant

y
values of p (solid curves) and for the minimum Vy value obtainable
(circled points). The reduced order controllers for thicknesses

15 were unstable. The performance

less than 15.0 meters at o = 1.0x10~
results are for LQG controllers based on two rigid body modes and
three elastic modes. Similar results were obtained for reduced
order controllers of otner orders (see Appendix B). It is
interesting to point out that for this example the optimal performance
always occurs when the thickness (h) is near 7.5 meters, whereas a
local maxima occurs when h is near 15 meters.

A procedure has been demonstrated to utilize equivalent continuum
finite element modelling methods to efficiently examine the effects
of parametric variation of the cross sections of plate-1ike space
lattice structures. Using a specific space lattice structural
configuration, two sets of parameter variations were performed. In
the first case, the length of all the members as well as the mass
of the structure were held constant. This caused the area of the
surface members to be a function of the area of the internal diagonal
members. The second case involved the variation in the thickness
of the space lattice structure. Again, the length and total mass
of the structure were held constant. The allowable buckling load

of the slender jnternal members was also held constant. Thus the

>
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Figure 18. Modal Cost vs. Thickness.
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cross sectional area of the surface and internal members was
determined to be a function of the thickness. For both cases,
maxima were obtained in the natural frequencies and optimal
performance values of the design parameter were calculated.
Modelling the structure using the finite element continuum model
is seen to allow more flexibility in treating geometry, boundary

conditions, attachments, and other structural complexities.
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CHAPTER IV - EQUIVALENT MODELLING OF
FRAME STUCTURES WITH RIGID JOINTS

In this chapter a micropolar plate continuum model of plate-1ike
space lattices whose frame members are connected with rigid joints
is derived. The resulting continuum model is used to derive an
equivalent plate finite element including micropolar rotations and
transverse shear deformations as nodal d.o.f.'s in addition to
displacements and displacement derivatives.19

A hexahedral space lattice structure with rigidly connected
frame members is used as a demonstration problem. Several sets of
frame member cross sectional properties are used. The exemplary
plate-1ike space lattice structure is assumed as rectangular in shape
with rigid joints and with four repeating cells along each edge. The
natural frequencies and mode shapes of this structure with all edges
free are calculated with and without the micropolar strains and
rotations using the micropolar plate finite element. The natural
frequencies and mode shapes are also calculated using a detailed
finite element model (with every structural member modelled by a
beam-column element) of the plate-like space lattice structure. The
natural frequencies and mode shapes obtained using the micropolar
theory are shown to be in good agreement with those obtained using

the detailed finite element modelling, for the present example. The
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natural frequencies and mode shapes calculated neglecting the micro-

et XPaan,

polar terms are found to differ substantially from those obtained

by the detailed finite element model. A static analysis is also
performed for a rectangular plate-like space lattice structure with
rigid joints and with eight repeating cells along each edge. The

plate structure is simply supported at four corners and loaded at

the center by a transverse concentrated Toad. The static deflections
of the structure are calculated using the same three types of
modellings. Again, the static deflections obtained using the micro-
polar plate finite element model are in good agreement with those

from the detailed finite element model, while neglecting the micropolar

terms causes substantial discrepancies.

Equivalent Continuum Representation

The repetitive nature of many large space lattice structures
allows them to be modelled as an equivalent continuum. The smallest

fundamental building block of such a structure is called a unit cell.

The strain energy expression of the unit cell is obtained using a
finite element model with each frame member modelled with a one

dimensional beam-column element containing both axial and flexural

rigidity.
U.17 =% a1 [K_1;)(q} (1v.1)
cell ~ 2 cell
where
Ucen is the strain energy of the unit cell;
B O P VO B R TN i.’i‘: .............. PRGNt A 5Tt 2 N0 ST RTINS
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(“1’ Vi wi) are the translations in the (x,y,z) directions

at node i;
(8, , B, , B_ ) are the rotations about the (x,y,z) axes
i Yy
at node i;
[Kce11] js the stiffness matrix of the unit cell; and

n is the number of joints in the unit cell.

In this study, the stiffness matrix was computed using the NASA
Structural Analysis (NASTRAN) code, with each frame member modelled
as a CBAR type element.14

The derivation which follows is equally valid for unit cells
containing other structural elements such as plates and membranes.
The translation and micro-rotations in the unit cell are assumed to
vary linearly through the thickness (h) of the plate-like structure.
The orientations of the various translations and rotations are

expanded as a first order Taylor's series in the z direction yielding

ten displacement components at the midplane (see Fig. 20).

c
L

= ulxgs y;) + 25 0,(x45 ¥5)

<
n

V(x'i’ .Y.i) + zi ¢_y(x'i, ‘yi)
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Figure 20. Orientations of Translation, Rotation,
and Microrotation.
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W, = w(xi, yi) +z, sz(Xi, yi)
Byi = O (Xgs ¥3) + 25wy (x50 ¥4) (1V.2)
BXT' = ey(xi’ y'l) + zi Uyz(xi’ y-i)

where (u,v,w) are the translations in the (x,y,z) directions;

(¢x, ¢_) are the rotations about the (-y, x) axes; (ex, ey) are the

y
; 3 . = dw . - .
microrotations about the (-y,x) axes; €y T gy b Myz = deX/dz, and
My = dey/dz all at the midplane of the plate continuum. The
rotation (eZ ) about the axis normal to the plate is ignored. It is
i
noted that the positive sign convention of each rotation is based on

the right hand rule. Each of these ten displacement components at
the plate midplane is expanded as a second order Taylor's series in
x and y about the center of the unit cell. For example, three are
shown below.
2
u(xy) = ap +xa, +yag + 5 2y v ag + A

2 2

= X Xy y
V(xwy) = 3y + xag +yag * At G Ay g (I3
(x,y) - agg + Xa., + yapg, + X a,+Xa 4+ XE a
Hyz ' XsY 55 56 T Y357 T 7 85 T 3 359 T "7 dgg

Using Eq. (IV.2) and Eq. (IV.3) the nodal displacement vector {g} can
be expressed in terms of the displacement Taylor's series coefficient
vector {a}l.

{q} = [T] {a} (Iv.4)
6nx1 60x1

.......................................................
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B




66
where
T
[T1=|Tp | [T,0=1[05] z[s1]
| Tn_
S5 0 O 0 0
0 Ss 0 0
0 O S5 0 0
[s] = (Iv.5a)
0O 0 0 O S5
.0 0 0 0 0]
where
2 2
X0 Xi¥s Y.
= iz
[s;1 = [1 %3 ¥ 5 —5—
Substituting Eq. (IV.4) into Eq. (IV.1) yields the strain energy
expression of the unit cell in terms of the displacement Taylor's
series coefficient vector.
U .y == @} [TITK 14 10T} (IV.5b)
cell ~ 2 cell .

The fundamental assumption of micropolar continuum theory is

that the local rotation at a point (microrotation) is independent of

20

the translations. The strain components of the micropolar continuum

are defined in terms of the ten midplane displacement components.
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classical plate strains:

2€xz ) %¥ tyos
micropolar strains:

" % (g¥ - ¢x) -

Myx © g;? P Myy T

These strains are expanded

the center of

Exx - fx t Ex,x X
0, o
= ¢9 4
vy~ fy T fyy Y
)
Exy T Exy T Exy,x

de

67
dv 9e = du L dv .
y '’ xy dy " dx®
dé d¢ do
H 2x = X + Y ;
dy Xy dy dx
dw .
zeyz =y + ¢y’ (Iv.6)
: =1 dw
eX’ ry = '2 (dy = ¢y) - eys
de de
. 12X,y
y ° Mxy 7(dy+dx)

the unit cell.

in a strain Taylor's series in x and y about
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_ 0 0 0
ny = ny + ny’x X + ny’y y
N P I 53 M 0 13
 xz = fxz 7 Exz,x €xz,yY "Sxz,x¢ 2 T Sxz,xy™ T Cxz,y2 2

_ .0
"x = Tx
0
r = Iv.7
y Ty ( )
- .0 (o] (o}
Mxx T Pxx T oMxox X T Mxx,y Y
0 0 )
= + X +
yy T Myy T Fyyax X T Myy,y Y
S0 4.0 0
My T Mxy T My X T Mxy,y Y
e. = el + 2 x+ &l ed & + 2 Xy 0 i
z 27 fz,x 2,y €2,x2 72 Z,xy 2 z,y2 2
S0 40 440 + 0 5E_+ 0 XY .0 xf
“xz T Yxz T Mxz,x Yxz,y ¥ T Pxzx2 7 T Pxzuxy 2 T Mxz,y© 2

From Eq. (IV.3), EQ. (IV.6), and Eq. (IV.7) we can generate a
relationship between the strain Taylor's series vector {e} and the
displacement Taylor's series vector {a}l.

{e} =[A] {a} (Iv.8)
53x1 60x1

where
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o 1,0 , o0, 3%y _ o _ .0 _. .
o8 3 = &y 2 (u,y * v,x) =TT b B4 F Kyx T by x T 8323
- a,,ta
=0 =40 - . =0 1.0 oy __33 38
€5 = Kyy T Oy,y T 2395 S = Ky T2 (8, * 4y i) 2
‘ - 0 . .0
L. 7 % Exx,x T Ux2 T A3 £g F fxyy T U4y = 353 g9 T €y
\:::. _ 0 _ .
o "~ Voxy 7%
= 0 =0 = . = o = 1,0 Y = .
€10 7 Cyy,y ~ V,y2 T 2125 €11 F Syy .« 'Z(u,xy) + V,x2) = 2g%ayps
.o _1l0 0 . R =¢° oza.,:
b €12 = Exy,y Z(u,y2 * v,xy) =3 * 2115 €13 F Kyex,x - 9x,x27 3343
- _ 0 _ .0 - i _ .0 - ,0 - )
3 €14 = ®xx,y T Ox,xy T 3355 €15 = Kyy x T by xy T 213
.0 _ 0 __ . . _ o _1l,0
o ®16 % Syy.y T .2 T 2425 617 % Sxyx T 20k xy F 0y k@)
- _ %35%%40.
) 2
o a,.t+a
. - 0 - 1.0 0 - _36 41 |
: €18 = “xy,y "?(¢x,y2 * ¢y,xy) o2
o= . 0_ 0_ . . 5.0 _ .0 0 _ )
= €19 7 T €77 435 S0 T Zeyp T Wt oy = Ay, g
‘
N -, 0 _ .0 o _ ) i} _ .0 0
‘,, €21 * 26yz Wyt by = 815 * 8393 €pp = 28xz,x Wx2t oy x

=16t 2305
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€23 = 28xz,y N w,xy ¢x,_y =97 * 8335 €p4 = 28yz,x = w,xy
* ¢;,x =817 * 338}

€5 = 26y 0y T W?yZ * ¢;,y =81 * 3393 £y = eg,x = A48
€27 * Sg,y = %5

€28 © Eg,xZ = 65 €29 = Eg,xy =375 €30 F eg,yZ = 38

6315"3=%("’?x'¢g)'925%74'6-;1'319’

€32 = r; ) %‘W?y - ¢;) - by E E%E "E%Z " a9

£33 T Mgy = Ag95 €34 © ”gz,x = 3505 €35 = Hyp,y - 351

€36 ° “gz,xz = g3 €37 = “gz,xy = 3535 €38 = “:z,yz = g4

€ =u0 dp-s € a € = 0 S Apos
39 © Myz 7 955* f40 T Myz,x T °56° f41 T Yyz,y * 957}
- .0 = . :o = . :o = .
€42 7 Vyz,x2 ¥ 3583 €43 F Myz xy T 3593 €44 = VWyy 2 T Agg3
:Og;o = . :o =0 = . :0
€45 7 Pyy T O%,x T 220% €46 % Mxx,x T Sx,x2 T 2225 47 T Uxx,y

- a9 = .
- 6x,xy = 833
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NN o _ 0 _ . .0 _ .0 - . .0
DI €48 = Vyy = B,y T 227% fa9 F Vyy,x T Py,xy T %29% S50 T Myy,y

A 0 0

_ L _ 1 _aytagy
=8y y2 33305 ey 2w = 5{6 = =

by Toy.x) > s

a,.ta
232 28 . and

|
(e
n
|
——
@
(o]

0]
x,xy * %y,x2)

d,ta
} 0 0 _ 3%y
€53 = Hyy,y0 = Ox,y2 ¥ Oy yvxy) 2

®52 = Mxy,x 2

The rigid body motions of the structure {b} can also be expressed

in terms of the displacement Taylor's series vector {a}.

{b} = [Ab]{a} (IV.9)
where

5
." {b}T = (uO’ Vo O, 0, Q) s

2 W bys b

_ 1,0 0. 21 -
0 =3 (u,y - V,x)’ and @ =3 (ex,y ey,x)

Equation (IV.8) is merged with (IV.9)

€ A
{ } = 1 {a} (I1v.10)

M TN

' This equation is inverted.

= {a) = [B, B,] {zz (Iv.11)

where

1.0 1.0 -1.0; B 1.0;

b13,3

s Bp7,2 = 105 Byg g

Bp1,1 = 105 B3 6 =
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-1.0; Bb15,5

= -1.0; Byzy 4

-
o
(o)

(9]

—
~

-

[=)]
....a

............

L ahat gl b e A dr S Bk

= .1.0;

= '1.0; Bb21,7 = 0-0; Bb25,5

Bp31,4 = 1-05 B3y 4 =

1.0, B =

e5,8 1.0, B =

¢6,9 -1.0;, B

2.0; B -1.0; B = 2.0;

€10,8 €10,11

—
o
we

._n

.0; B = 1.0;

B.14,20 © €15,21

.0; B 0.5; B 0.5;

el7,24 = 17,23 ©

-1.0; B

19,31 20,45

= 1.0; B

e23,47 = 1:05 B_og 49

= 0.5; B =-1.0; B

€25,32 €26,51

= -1.0; B

¢27,52 = 2:03 B og 49

=1.0; B = 0.5;

€36,23

1.0, B

e34,13 - 1-05 B35 14 = 105 B 35 15 =

=1.0; B -1.0;

=1.05 8,395 €40,14 =

............

........

1.0; BeZ,l =

€6,12

= 1.0;
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1.0;

=2.0;

= 1.0;

= 1.0;

=1.0;

-1.0;
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S Beao,17 = 2:03 Beag 15 7 1:05 Bogp 1 = 105 Begy o9 = 1.03
Beag,30 = 1-05 Bogg,33 = 1-05 Bgg 34 = 1.05 Bgy 35 = 1.03
Bes2,36 = 105 Beg3 37 = 1.05 Bgq 39 = 1.05 Bgg 39 = 1.0
Bese,a0 = 105 Begy g1 = 1-05 Bogg 4o = 1.05 B gg 43 = 1.0

Bs60,44 = 1.0; and all other terms of B and Bb are equal
to zero.

Substituting Eq. (IV.11) into Eq. (IV.5) and taking advantage of the
fact that the strain energy is independent of rigid body motion of
(jt the structures gives the expression for the strain energy of a unit

cell in terms of the strain Taylor's series coefficient vector {e}.

Ueerq = 3 ()T IKICe) (1V.12)

cell

where

(k.1 = [8,1TLTI"[K o, 20T20B,1

Strain components in the plane connecting two unit cells must have
identical values to maintain compatability. This is satisfied by
taking the origin of the Taylor's series expansions at the center of
the unit cell and requiring that the expansions for these strain
components be even, insuring that these strains are identical on

opposite sides of the cell. Therefore, the odd derivatives of
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Qﬁg - these strain components are set to zero by removing the appropriate
a .
W rows and columns from [KE].
::\' - eo = eo = eo = eo = uo = Uo =0 (IV 13)
- X2y, YZ,X Z,X 2,y XX,y NAZL '
o
'. The strain gradients are retained in the Taylor's series expansions
j%ﬁ to allow internal motion within the cell. There is no loading
{%3 associated with these strain gradients and the partial derivative
3 of the strain energy with respect to these terms should be zero.
fﬁj Ueen - Weer - Ween = el - Weent - Weent =0 1
o 0 0 0 ) 0 0 \
” aexx’x aexx,y aeyy’x aeyy’y aexy’x aexy’y |
o Ueerr | Yeen1 | PYeetn _ Yeenn | Yeenn | Yeent _ ;
0 0 0 ] 0 0 o !
o ®eox o xy Tyyax Tyyy Fxyax xyay |
Aa; Ween _ WYeens _ Veen _ Ween1 _ Veen - Weent -
73 0 0 0 0 ) o
f.'.- 3€ 7 aexz’x aeyz’y asz’xz Bez,xy aez,yz
’)' (Iv.14)
7 Weenr | Veetn | Peetr | Yeent | Meen1 | Meenn _
- 0 o 0 0 0 0
e Mz Myz,x  Oxz,y  Mxz,x2  xz,xy  xz,y2
< Weet1 _ Veen _ Ween _ Vel - Weer - Ween -0
- MPyz o Pyzx Pyzy Myzad Pyzxy Pyz,y?
}fﬂ' Ucetn _ een - Weer - WUeer -0
T ) 0 0 o
Cr Maxx Myyy Pxyax o Py
Y
‘\.}
2;. Using Castigliano's Theorem, this is the same as requiring that the

row of [Ke] corresponding to the strain gradient times {e} be equal
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I to zero. [Ke] is partitioned so that all of the constrained terms
in Eq. (IV.1) fall at the end of the vector {c}.
T
1 er Ksrr Ker EY‘
Uce]1 =5 (Iv.15)
€ K K €
ro oo
T_,0 0 0 0 ) 0 0 0 o 0 © 0
Where {Er} - (EXX’ Eyy’ Exy, KXXQ Kyy’ ny, Zexzy ZEyZ, Y‘X, I"y, uxx’ uyy
o . : . . T_,0
“xy) are the strain terms which are constrained; and {eo} = (exx,x’
Cxx,y® *t? “xy,y) are the strain terms constrained in Eq. (IV.14).
The constraints, Eq. (IV.14) are then rewritten.
€
o=tk ok 1" (1V.16)
ro 00 €
)
< This equation is rewritten as an expression for {eo} the constrained

strain vector.

-1
{e}=-[K 1°[k ] {1} (1v.17)
o €00 €10 r

Substituting Eq. (IV.17) into Eq. (IV.15) yields the strain energy

expression in terms of the retained terms.

U 3 (e} [Kygd tepd (1v.18)

cell

where

[K

[}
I

eq
13x13

ro 00 €ro

(S N (O (S e (A
rr

.........
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v It is assumed that [Keq] divided by the area of the unit cell (Ace11)
forms the constitutive matrix of the continuum at all points
K. ] :
1 T Keg
Ustructure = 2 J lep Rcell {e,.} dA (1v.19)

Area of
the structure

Equivalent Finite Element Model
15

The 16 d.o.f. rectangular plate element™™ is modified to include
in-plane, transverse shear, and micropoiar rotational terms yielding

a 40 d.o.f. element. The interpolation functions are assumed as
Tinear except for the out-of-plane displacement which is assumed as

a bicubic Hermite polynomial.

| =4
i

=€yt CoX * Ca¥ + CyXY

VD = Cp + CeX + Cay + CoXy

o _ 2 2 3
Wo = Cg F CypX + Cpp¥ + CpoXt + CuaXy + Gy * CypX
2 3
Pyt °17x5’2 + °18>’3 Xyt Czo"zy2 + °21"y3
3 33
+ CooX y2 + c23x2y3 + CopX'y (Iv.20)

o _
Zeyz = Cop ¥ CogX + Coz¥ + CogXy

o _
Ze ., = Cpg * C3gX * C3p¥ * CzpXy

wd
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c"‘_'::‘-
<]
P
|

= C33 ¥ CggX * C3g¥ * C3eXy

By = C37 * C3gX * C3g¥ ¥ CypXy

Using the strain definition, Eqs. (IV.6) and the interpolation
functions (IV.20), the strain vector {Er} is related to the

interpolation coefficient vector {c}.
{e d = [Cl{c} (Iv.21)

where

[cl]=1]0 c, 0 H

. | 0 Cp3 3]
&
o 1 0 y 0 0 0 0
€= |0 0 O 0 0 1 «x ;
0 0 0.5 05x 0 05 0 0.5x
[0 00 -2 0 0 -6x =2y O 0 -6xy
000 0O 0 -2 0 0 -2x -6y O
[Cd= [0 00 0 -1 0 0 -2x -2y 0 -3|;
000 0 0 0 0 0 0 0 0
000 0 0 0 G 0 0 0 0O
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[Coscd = ;
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0 0 O 0 0 1 «x
| 0 0 0.5 0.5x 0 0.5 0 -0.5y]

The strain energy expression, Eq. (IV.19) for the structure is used
to derive a finite element representing a portion of the structure.
Substituting Eq. (18) into Eq. (16) and limiting the integration to

a specific element gives the strain energy expression of the element.

- 1 T T
Ve = e (©) [ e gictene (1v.22)

Area of
the element
The 40 d.o.f. of the element can be expressed in terms of the
interpolation function coefficients {c} by using Eq. (17) and the

x,y location of each node point of the element.

ge] = [R]{c}
where

T

{ge]}T = [ng 9, 93T g4T] ; (Iv.23)

2
dw, dw, d"w.
T _ i i i, 0 o ,0 0.,
{g;b" = [uy vy 5 dy dxdy Zszi ZKyzi exi eyi] ’

and i refers to node c of the element.

The strain energy expression of the element is then expressed in terms
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of the nodal d.o.f.'s.

U =

T

rOf—

where

1 -T T
= C CJdALR] .
(K] = i [R] [ reIKQIICeALR]
Area of
the element

The same Tumped mass matrix used for the repetitive space lattice

with pinned joints Eq. (II.25) is used in this chapter.

Results
Space Lattice Structure Configuration

The hexahedral space lattice geometry (Fig. 21) is used as a
demonstration problem. The space lattice is generated by repeating
a unit cell (Fig. 22) several times in two orthogonal directions.
The initial properties of the structure were chosen to be similar
to several box truss geometries which have been deve'loped.ZI’22
The length of each main structural member, which is equal to the
thickness of the space lattice structure, is 4 meters. The main
structural members are 6.1 mm thick Graphite Epoxy Tubes, 11.7 cm
in diameter. The diagonal braces are aluminum tubes, 5.657 meters
long with a thickness of 0.5 mm and a diameter of 1.58 cm. The
natural frequencies and mode shapes are calculated for a repetitive
plate-1ike space lattice structure with four cells in each direction.
The static displacements are calculated for a centrally loaded

plate-1ike space lattice structure with eight cells in each direction.
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Figure 21. Hexahedral Space Lattice.
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Natural Frequencies and Mode Shapes

The natural frequencies and mode shapes of this space lattice,
with free edge conditions, are calculated using three different finite
element models. The most accurate solution among the three is the
"detailed"” finite element mode, which is obtained using NASTRAN,
with each frame member of the structure modelled as a single CBAR
type finite element. Guyan reduction is used and the six rigid body
modes, are calcuiated using the NASTRAN free body support option,
Eqs. (II.7) to (I11.16). The flexible natural frequencies and mode
shapes are shown in Fig. 23 as the solid curves. Four sets of
frequencies are obtained by assuming four values of A/Ao, where the
value of cross sectional area A0 = 2.2365x10" P for the main
structural members is used as a basis for nondimensionalization.
It is assumed that the ratios of cross sectional areas and moments

of inertia between the main structural members and the diagonal

braces are as follows:

—

t, d A
=89.4; and 2=-22 (2
I, t,d, A

>l >
o lo

Therefore the main structural member properties scale as follows:

172

2

A A

t; d=4 d; I= ()
AO AO

(Iv.25)
0

the diagonal brace properties also scale using Eq. (IV.25). The
equivalent micropolar plate finite element developed above is then

used to calculate the natural frequencies and mode shapes which appear
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as the dashed curves in Fig. 23. The agreement between the results
obtained by the micropolar and the detailed finite element models

is good, especially for the relative small number (four) of cells
assumed. The equivalent micropolar plate finite element can be
reduced to a transverse shear type plate finite element by removing
the terms of [Keq] associated with the micropolar strains and con-
straining 8y and ey to zero. The natural frequencies and mode shapes
calculated using this equivalent plate model are shown as the dashed
dotted curve in Fig. 23. It should be noted that except for the
first flexible mode the transverse shear continuum plate model
frequencies deviate significantly from those results obtained by

the micropolar plate finite element model and the detailed finite
element model. These discrepancies are small for very flexible

tube members (as A/A0 is small) and they increase as the tube

members become stiffer (as A/Ao increases).

Static Analysis

The static deflection is also calculated using these three
different finite element models. The detailed model described above
is used to model a quadrant of a statically loaded plate-like space
lattice structure with a central concentrated Toad normal to the
plane of the structure. The structure is constrained against
translation normal to its plane at each corner. As in the calculation
of the natural frequencies, four values of cross section areas

(A/Ao) are used. The resulting nondimensional central deflection

(w/h) is shown as the solid curve in Fig. 24, where h is the thickness




R

N 85
|
.
: —— DETAILED FINTE ELEMENT MODEL
i ‘ EQUIVALENT PLATE FINITE ELEMENT MODELS
: 157
— — - WITH MICROPOLAR TERMS
i« —-—-- WITHOUT MICROPOLAR TERMS.-
F NODAL LINES 5T
: 6 T
5 .
N 5
&)
& | a4
-
g
3
x 5
2
| MODE |
O 1 1 1 B
0.0 025 05 075 10
A /B

Figure 23. Flexible Natural Frequencies
and Mode Shapes.




86

20r
\
\.
\.
15t
zZ,W
1 y
% ' el
= '\ \ A/////’/CE A j////<ﬁ:Ei,x
DETAILED \ \
N | — FnTE W\
o ELEMENT \ P=1.ONt
gg MODEL O N\
N
ST EQUIVALENT PLATE N
FINITE MENT M '~ =
— — WITH MICROPOLAR TERMS ~~._
—.— WITHOUT MICROPOLAR TERMS
1) 0.5 05 075 10

A/Rg

Figure 24. Nondimensionalized Central Deflections of
a Corner Supported, Centrally Loaded
Space Lattice.




: ’!mﬁ o

>
[

e

87

of the plate-like lattice structure as shown in Fig. 22. The
micropolar finite element models, with and without the micropolar
rotational terms, are also used to calculate the static deflections
which are shown in Fig. 24 for the four cross sectional areas as the
dashed and dashed-dotted curves, respectively. As in the case of the
natural frequencies the results obtained using the micropolar

finite element model agree well with those obtained using the
detailed finite element model. Both sets of results deviate
significantly from those obtained by the finite element model that
omits the micropolar rotational degrees of freedom as the structural

members become stiffer (as A/A, increases).

Conclusion

A method has been developed to allow repetitive plate-like space
Tattice structures with rigid joints to be modelled effectively as
an equivalent micropolar plate continuum. A micropolar plate
finite element has been developed using the strain energy expression
of this continuum model. This allows considerable simplicity and
flexibility in tresting geometry, boundary conditions, attachments,
and other structural complexities.

It is found that the present micropolar plate finite elements
can accurately predict the static deflection and natural frequencies
of the plate-like lattice structures. This is done by comparing the
results with those obtained using a detailed finite element model

where each structural member is modelled using one CBAR (6 d.o.f.'s

per node beam-column) element in NASTRAN. The present example study
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shows that the micropolar plate finite element is considerably more
accurate than the one without micropolar rotation but with transverse
shear d.o.f.'s.

While numerical results have only been generated for structures
built with frame members connected by rigid joints, the method would
certainly apply to a general class of repetitive plate-like structures
with either rigid or pinned joints. The present unit cell modelling
method as described in Eq. (1) could certainly be generalized to
include plate, membrane, or other types of finite elements, without
changing any subsequent portion of the method. Logical next steps
would include incorporating semirigid joints into the continuum
model, extension of the method to model member and joint damping
as continuum properties for forced response analysis, including

geometric nonlinearities, and applying this finite element model

for feedback control system design.




ik h
)
-4

4
Py S
rte
PR

Mo e

[t U S

¥ .;‘ A“‘ "..‘. _‘r .\ .Sf

-

4{

“*

LA . N x
"x.;«.t J .Lbla.«.i,_xmuumm.ﬁm‘; o mhh.ﬂm. bR 'L_;{.:.'

89

CHAPTER V - CONCLUSIONS
Further Developments
In this section several potential extensions of this work will
be discussed. In general, the theoretical basis of the idea is
presented without supporting numerical examples.
Semirigid Joints
The first extension considered is the application of the
micropolar plate finite elements developed in Chapter IV to model
L large repetitive plate-like space lattices with semirigid joints. 1In
@

order to use this element for these type structures, the detailed
finite element model of the unit cell would be developed with each
frame member modelled as a single beam-columm type element as before.
However, there would be a separate nodal point at each joint connected
to each element. The value of the translational displacements for

each of these nodes would be equated.

<
L[]
<
n
<
n
<
3

(v.1)

where
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T wij) are the translations along (x,y,z) of

(”ij’ Vs

the jth frame member; and

m. is the number of frame members of the unit cell which

intersect at joint 1.

Each rotational d.o.f. would be connected with rotational spring
elements of zero length (Fig. 25). The stiffness matrix of such a
spring element in terms of the torsional stiffness (J) of the spring

is given by:12

J -
I:Kv‘ot.spr':I = ,:_J J:I (v.2)

with this stiffness matrix connecting the rotational d.o.f. pairs

(B, » By, )» (B, 2 8, ), and (8, , B, ), where (g, , Byi . 8,

i ij i yij i i i j j
are the rotational d.o.f. about the (x,y,z) axes at joint i for the
jth frame and j varies from 1 to the number of frame members of the
unit cell intersecting at joint i (mi).

The equations of constraint Eq. (V.1) would be used to
substantially reduce the order of the stiffness matrix [Kce11] of
the unit cell. First the d.o.f.'s {q} are reorganized into three
vectors {q.} containing one set of translation and rotation d.o.f.'s
at each joint, {qo} containing the remaining rotational d.o.f.'s
at each joint, and {qc} conaining the remaining translational

d.o.f.'s at each joint. The matrix [Kce11] is similarly reorganized

and partitioned.

W W W e
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' Kee  Kro Kre
_ T
: : I:Kceﬂ:| = Ko Koo Koc (v.3)
h
T T
b
b _Krc Koc chj
The equality constraints Eq. (V.1) can be rewritten
i {q.} = [6]{q,} (v.4)
b The strain energy expression is given as:
I
» T - —
]
9 Krr Kro Krc 9
=1 T
Ueel1 2 <% Kro Koo Koc % (V.5)
i T T
9% LKrc Koc chﬂ 9%

Substituting constraint Eq. (V.4) into the strain energy expression

Eq. (V.5) yields an equivalent strain energy expression.13
T -
1 qr Krr KFO qr
Ueel1 = 2 Tz (V.6)
qO ro 00 qO
where
R.J =0k, I+ 0k 1+[K J06]+ 61k 1" + [617CK_ I061;
rr rr rr rc rc cc ?

[RpoJ= [Ko) + [817[K 175 and [R (] = [K ] -

For the micropolar plate finite element which is developed in Chapter

IV the mass associated with the rotational d.o.f. at the joints of

...........................................
........................................................

........................................................
............
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the unit cell is ignored since the "Tumped mass" description of
each individual frame member is used. This element is shown to
yield good natural frequencies and mode shapes using a specific
space lattice geometry. It is consistent with this assumption to
utilize static condensation Eq. (II.4) to reduce the strain energy

expression to contain only terms associated with {qr}.
U_1q =5 (9.3 [R 1.4} (v.7)
cell =7 19 cel1419 :

where

[Reerqd = [Kppd - [Rr'o][koo:rltkwo:IT .

It can be seen from'Eq. (I1.5) that the Guyan reduction is exact if
there are no mass terms associated with the omitted d.o.f.'s

([Mro] = 0 and [Moo] = 0). Therefore, the reduction in Eq. (V.7)
causes no additional error beyond that generated when Tumped mass
matrices are used for the beam-column elements. It should be noted
that the strain energy expression Eq. (V.7) is equivalent in both
order and form to Eq. (IV.1) and could be used to derive a micropolar
plate finite element for repetitive plate-like space lattices with
semirigid joints. These results would be compared with those
obtained with a detailed finite element model developed for the
entire structure in the manner described above for the unit cell.
Numerical results were not generated using this method since the

resulting detailed finite element model is larger than can be

effectively analyzed using NASTRAN as installed at Purdue University.
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Consistent Mass Matrices

The results obtained in this study were obtained using lumped
mass matrices for the individual frame members. Such matrices contain
half the mass of the member at the diagonal location associated with
each of the translation d.o.f. of the element. This ignores any
rotatory inertia effects within the individual frame members. The
results of the numerical examples in Chapter IV show that the lumped
mass assumption for the individual members is reasonable. One
obvious extension of this work is to develop the mass matrix in
terms of consistent mass matrices for each frame member. One way
to implement this would be to assume that the spatial derivatives
of the velocity components at the plate midplane are zero, implying
that the velocity components are only functions of time for each
unit cell. Using this assumption the kinetic energy expression of
the unit cell in terms of the joint velocities and angular velocities
can be transformed to a kinetic energy expression in terms of the
midplane velocity components. This has been done for the beam-1ike

8 This kinetic energy expression

micropolar continuum representation.
could be integrated over each element to yield the mass matrix of
each element.

An alternative method would be to apply the consistent mass
matrix method (where the kinetic energy expression is used to generate
the mass matrix of the element in the same manner that the strain
energy expression is used to generate the stiffness matrix of the

3

element) to the equivalent model.” The kinetic energy expression

of the unit cell calculated using a detailed finite element model
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of the unit cell is used as the initial kinetic energy expression

for the unit cell.

1 . T .
K.E =5 {q) M pe00a) (v.8)

‘cell

where {q} is the vector of nodal velocities of the unit cell and

[M ]] is the mass matrix of the unit cell from the detailed finite

cel
element model of the unit cell. 1If identical transformations,
reductions, and integrations were applied to this expression that
were used in Chapter IV with the strain-energy expression Eq. (IV.1),

the result would give the consistent mass matrix of each micropolar

plate finite element [Me1]defined as an analog to [Kel] of Eq. (1Iv.24).

Joint and Member Damping
There is considerable ongoing research to develop space lattice
frame members and joints with significantly larger damping than that

of traditional metal components.23

In this study all of the control
system results have been generated using an assumed value of modal
damping (z = 0.005). For structures with larger damping associated
with specific motions of the structure, it might be desirable to
include damping effects in the continuum model. One method of
doing this would be to build a detailed model similar to that
derived in the paragraph above dealing with rigid joints except
that the element damping matrices would be assembied and condensed
to yield a system damping matrix for the unit cell. This unit cell
damping matrix could be substituted for the unit cell stiffness

matrix in Eq. (IV.1). As for the consistent mass matrix in the

preceeding paragraph, the same procedure used to transform, reduce

Lot od
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and integrate from the unit cell stiffness matrix to the micropolar
plate finite element stiffness matrix, could be used to calculate
the damping matrix of each micropolar plate finite element. Once
assembled this would yield the equation of motion of the structure

as;

[K){q} + [B]{q} + [M]{G} = {P} (V.9)
where

[K] is the stiffness matrix of the micropolar plate

finite element model;

[B] is the damping matrix of the micropolar plate

finite element model;

[M] is the mass matrix of the micropolar plate

finite element; and

{q} is the vector of nodal displacement d.o.f.'s associated
with the micropolar plate finite element model of the

space lattice structure.

This equation could be solved to yield complex eigenvalues and
eigenvectors, which could be used in a similar manner to that
described in Chapter II for feedback control system design and system

performancé. Alternatively, structural dynamic response could be

generated using direct integration analysis methods.
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Application to Non-Lattice Type Structures

While the equivalent continuum models in this study were

[ : specifically developed for large repetitive space lattice structures,

R their usefulness should extended to many other types of structures.
As an example, one such application will be discussed. Large

‘{ mirrors are often designed as a surface plate which can be coated,

5 supported by a backup structure which is often made up of web type
structure (for example, see Fig. 26). Detailed finite element

'~ models of this type of structure can be too large and cumbersome

to use effectively. As an alternative, the micropolar plate finite

element developed in Chapter IV could be calculated from the

stiffness matrix of the unit cell based on a detailed model of the

- unit cell (such as in Fig. 27) and used to solve for the structural

- iji response of the large mirror.

E« Summary

% A basic procedure to analyze large repetitive plate-like

space lattice structures with pinned joints using finite element

.- models of equivalent continuum representations of the strain energy

and kinetic energy of the structure has been developed and implemented.

By retaining the transverse shear deformations in the finite element

formulation, the equivalent plate finite element models are found

to give modal results consistent with those generated from a detailed
truss bar element model of the space lattice structure even for small
numbers of unit cell repetitions.

The modal models resulting from the finite element model are

o shown to serve as accurately, yet are more simplified in the control
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Figure 26. Large Mirror Example Problem.
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Figure 27. Detailed Plate Unit Cell
Finite Element Model.
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o design process compared to the complex truss bar element model for
a specific large plate-like repetitive space lattice structure. This
study has shown that choosing control design models based on a modal
sequence may involve unnecessary modes. By using Modal Cost Analysis
to consider the control problem based on a sequence of lower modes,
it is found that several intermediate modes do not contribute much
to the control design.

A procedure has been demonstrated to utilize equivalent continuum
finite element modelling methods to efficiently examine the effects
of parametric variation of the cross sections of large repetitive

plate-1ike space lattice structures. Using a specific space lattice

structural configuration, two sets of parameter variations were

?if performed. In the first case, the length of all the members as well
h g- as the mass of the structure were held constant. This caused the
-iﬁ area of the surface members to be a function of the area of the

internal diagonal members. The second case involved the variation

in the thickness of the space lattice structure. Again, the length

and total mass of the structure were held constant. The allowable

buckling load of the siender internal members was held constant.

Thus the cross sectional area of the surface and internal members

was determined to be a function of the thickness. For both cases,
maxima were obtained in the natural frequencies and optimal
performance values of the design parameter were calculated. Modelling
the structure using the finite element continuum model is seen to

allow more flexibility in treating geometry, boundary conditions,

attachments, and other structural complexities.




S A method was developed to allow repetitive plate-like space

Tattice structures with rigid joints to be modelled effectively as

an equivalent micropolar plate continuum. A micropolar plate finite
AN element has been developed using the strain energy expression of
. this continuum model. This allows considerable simplicity and flexi-
bility in treating geometry, boundary conditions, attachments, and
-;f . other structural complexities.

It was found that the present micropolar plate finite elements
.j?? can accurately predict the static deflection and natural frequencies
i;ﬁ of the plate-like lattice structures. This was done by comparing
. the results with those obtained using a detailed finite element
model where each structural member was modelled using one CBAR

el (6 d.o.f.'s per node beam-column) element in NASTRAN. The present

Qﬁf example study shows that the micropolar plate finite element is
ﬁ%? considerably more accurate than the one without micropolar rotation
S but with transverse shear d.o.f.'s.

Several extensions to equivalent plate modelling methods have

v been examined. These include techniques to allow the existing
Zjﬁ equivalent micropolar plate finite element modelling method to

solve structural dynamics problems of large plate-like repetitive
N, space lattices with semi rigid joints, consistent mass matrices

,fg for the individual frame members, and element damping for the frame
members and joints; as well as non-lattice repetitive plate-like
%;f structures (such as mirrors). The equivalent plate modelling

methods could also be extended to include geometrically nonlinear

1’? terms allowing buckling of the structure to be examined.
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Conclusion

As the size and complexity of large repetitive space lattice
structure increases the need for accurate, efficient, analysis
methods to allow the structural response (both static and dynamic)
of these structures to be predicted efficiently also increases.
Developing detailed finite element models of large, complex
structures is extremely time consuming and cumbersome. Analyzing
structural response for such complex structures is also extremely
costly and for sufficiently large and complicated structures may
be impractical, particularly in the design phase where many analyses
are required. Numerous methods have been developed to simplify
and automate the ané1ysis of large, complicated structures. While
these advances are crucial, particularly for large repetitive
structures, even with extremely refined software to manage the
generation, assembly, and transfer of large data files from
different portions of the structure to some system model, most
of these methods achieve the model reduction by removing internal
d.o.f.'s from portions of the structure (substructures) and
representing these portions of the structure in terms of the
deformation at the boundary points with adjacent substructures
(retaining sufficient internal d.o.f. to represent the loading and
internal dynamics of the substructure). In these methods, the
resulting model of the system is tied to the internal geometry of

the fundamental structure. In general, the locations where node

points of the system model can be loaded are limited.




;f j%;J As an alternative to potentially cumbersome detailed modelling,
N numerous studies have been performed where a standard continuum
finite element (such as a plate element) is used to model a discrete
structure by using an equivalent set of fundamental properties
(such as E, v, p, t, ...). Several studies have been conducted to
develop systematic methods for determining these properties.
- Recently, methods have been developed to systematically generate
constitutive matrices of equivalent continuum representations, where
.- higher order strain terms have been retained consistent with the
motion the unit cell of the repetitive structure is capable of.
In a few cases, these have been used with existing finite elements
to analyze specific space lattice geometries. However, in general
the equations of motion have been solved in closed form or numerically,
v usually for simply supported structures. To the authors knowledge,
1 no systematic effort has been made to develop higher order plate
finite elements with displacement functions specifically chosen to
be consistent with the higher order strain terms in these equivalent
- continuum representations.

This research effort has extended the existing equivalent
continuum representations where necessary (no such representation
existed for large repetitive space lattices with rigid joints).
Rectangular plate type finite elements have been developed whose

w displacement functions are consistent with the equivalent continuum

representation containing transverse shear deformations, with and

without micropolar strain terms. While these elements are intended

to model structures with many repeating unit cells per plate-type
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finite element, it is gratifying to see that the elements accurately
predict the response of the current examples even for very small
numbers of unit cells per element.

The equivalent plate finite elements representing large
repetitive space lattice structures have many advantages compared
to more conventional methods. One significant advantage of this
method over detailed modelling using a substructuring method is
that the number of and location of nodal points required to model
very large, complex, repetitive plate-like space lattices is
determined by the number and accuracy of the modes required, not by
the internal geometry of the space lattice. Specifically, there
is no requirement that (or advantage to) having internal node
points of the structure located at unit cell boundaries or joint
locations in the lattice. Large repetitive plate-like space
lattice structures of the type considered in this study will be
used as space platforms to which will be attached various other
structural members. While solving the equations of motion of the
equivalent continuum representation of a free floating space
platform with attachments can certainly be done numerically, it
is simpler and more convenient to model the space platform as an
equivalent higher order plate-type element which can be coupled
with other structural components and analyzed in the free floating
configuration using existing finite element solution techniques.
Some space lattices will be generated with different lattice
configurations in different regions of the structure. The equiva-

lent plate finite element formulation applies directly to this type
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of structure by simply using different higher order constitutive
matrices in different regions of the structure. While the elements
developed in this study were rectangular in shape, for simplicity,
elements of other shape could be developed using similar methods.
Thus, plate-1ike space lattices of arbitrary geometry can be
readily analyzed using this method.

This research represents a new philosophy to the structural
analysis of discrete structures. That is, an equivalent continuum
representation of suitable order to account for the possible motion
within a unit cell is used as a bridge connecting a repetitive
discrete structure with a consistent order discrete finite element
model of the structure. This method gives accurate results while
greatly simplifying the modelling process over more direct methods
of going from the discrete structure to a reduced finite element

model of the structure for large, complex, repetitive structures.
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Parametric Study Performance Plots
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APPENDIX B

Parametric Study Performance Plots
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